FindPrimaryPairs: An efficient algorithm for predicting element-transferring reactant/product pairs in metabolic networks
نویسندگان
چکیده
The metabolism of individual organisms and biological communities can be viewed as a network of metabolites connected to each other through chemical reactions. In metabolic networks, chemical reactions transform reactants into products, thereby transferring elements between these metabolites. Knowledge of how elements are transferred through reactant/product pairs allows for the identification of primary compound connections through a metabolic network. However, such information is not readily available and is often challenging to obtain for large reaction databases or genome-scale metabolic models. In this study, a new algorithm was developed for automatically predicting the element-transferring reactant/product pairs using the limited information available in the standard representation of metabolic networks. The algorithm demonstrated high efficiency in analyzing large datasets and provided accurate predictions when benchmarked with manually curated data. Applying the algorithm to the visualization of metabolic networks highlighted pathways of primary reactant/product connections and provided an organized view of element-transferring biochemical transformations. The algorithm was implemented as a new function in the open source software package PSAMM in the release v0.30 (https://zhanglab.github.io/psamm/).
منابع مشابه
الگوریتم مستطیل آبشاری و ماتریس انتقال در شبکه های کوتاه ترین مسیر بادور
Shortest path problem is among the most interesting problems in the field of graph and network theory. There are many efficient matrix based algorithms for detecting of shortest path and distance between all pairs of this problem in literature. In this paper, a new exact algorithm, named Cascade Rectangle Algorithm, is presented by using main structure of previous exact algorithms and developin...
متن کاملAn Efficient Cluster Head Selection Algorithm for Wireless Sensor Networks Using Fuzzy Inference Systems
An efficient cluster head selection algorithm in wireless sensor networks is proposed in this paper. The implementation of the proposed algorithm can improve energy which allows the structured representation of a network topology. According to the residual energy, number of the neighbors, and the centrality of each node, the algorithm uses Fuzzy Inference Systems to select cluster head. The alg...
متن کاملPathPred: an enzyme-catalyzed metabolic pathway prediction server
The KEGG RPAIR database is a collection of biochemical structure transformation patterns, called RDM patterns, and chemical structure alignments of substrate-product pairs (reactant pairs) in all known enzyme-catalyzed reactions taken from the Enzyme Nomenclature and the KEGG PATHWAY database. Here, we present PathPred (http://www.genome.jp/tools/pathpred/), a web-based server to predict plausi...
متن کاملPrediction of Egg Production Using Artificial Neural Network
Artificial neural networks (ANN) have shown to be a powerful tool for system modeling in a wide range of applications. The focus of this study is on neural network applications to data analysis in egg production. An ANN model with two hidden layers, trained with a back propagation algorithm, successfully learned the relationship between the input (age of hen) and output (egg production) variabl...
متن کاملAn Efficient Routing Algorithm to Lifetime Expansion in Wireless Sensor Networks
This paper proposes an efficient network architecture to improve energy consumption in Wireless Sensor Networks (WSN). The proposed architecture uses a mobile data collector to a partitioned network. The mobile data collector moves to center of each logical partition after each decision period. The mobile data collector must declare its new location by packet broadcasting to all sensor node...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018